GRASP PATTERNS
AND ITS TYPES

PRESENTED BY:

SAIRA BAND

RAMSHA GHAFFAR

SYED HASSAN AL HASHMI

DEFINITION

» GRASP or General Responsibili signment Software Principles hel
guide object-criented Egsign g; gséa[ﬁy outri'inl‘ng WHO do@spWHﬁt E

object or class is responsible for what action or rele? GRASP also helps us
define how classes work with one another. The key point of GRASP is to
have efficient, clean, understandable code

PATTERNS

» In OO design, a pattern is a named description of a problem and solution
that can be applied to new contexts; ideally, a pattern advises us on how to
apply its solution in varying circumstances and considers the forces and
trade-offs. Many patterns, given a specific category of problem, guide the
assignment of responsibilities to objects.

PRINCIPLES

Within GRASP there are nine principles that we want to cover. They are:
Creator

Controller

Information Expert

Low Coupling

High Cohesion

Indirection

Polymorphism

Protected Variations

Yy ¥y ¥y Y ¥y ¥y Yy vy

Pure Fabrication.

We'll be talking about a chess game and the various responsibilities and
elationships between the objects and classes within the game.

Chess Game

Played on:
32

Played uging: E.g- Pawn, Rook,
Cueen.

64

Square
White/Black ’ White,/Black

CREATOR

» The Creator defines WHO instantiates WHAT object. In object-oriented
design lingo, we need to ask the question of who creates an object A. The
solution is that we give class B the role of instantiating (creating an
instance of) a class A if;

» B contains A
» B uses most of A's features
» B can initialize A

So far this doesn't really help us understand how this works. Let's use a real-world

example of a chess game. A chess game includes 2 players, 32 pieces (16 per player)
and a game board with 64 squares.

Creator

PossibleMoves

Creates. .

Creator

CONTROLLER

In our chess example, the end user is going to interact with our program through a user
interface (UI). The Controller is the FIRST object to receive a command from the UL In
our case, when the user presses Play, the first object that should be triggered is the Chess
Game.

INFORMATION EXPERT

» Information expert is a principle used to determine where to delegate
responsibilities. These responsibilities include methods, computed fields,
and so on.

» Using the principle of information expert, a general approach to assigning
responsibilities is to look at a given responsibility, determine the
information needed to fulfill it, and then determine where that information
is stored.

» Information expert will lead to placing the responsibility on the class with
the most information required to fulfill it

INFORMATION EXPERT

The Information Expert pattern states thatl we need to assign responsibilities to the right
expert. Is the game board itself the expert on how pieces can move or are the pieces

themselves the experis at their moves? In the case of the chess board, the piece is the
expert on the possible move options for that piece.

LOW COUPLING

» Coupling is a measure of how strongly one element is connected to, has
knowledge of, or relies on other elements. Low coupling is an evaluative
pattern that dictates how to assign responsibilities to support

» lower dependency between the classes,
» change in one class having lower impact on other classes,
» higher reuse potential.

moveSquare(square)

getAllSquares()

moveSquare(square)

uare
White/Black

LOW COUPLING

Low Goupling can be described as following the path of least resistance.
Coupling is a measure of how much objects are tied to cne another, We
can follow the information expert for the lowest level of coupling. So, to
get the moves available to a piece, we start with the information expert,
and not some other class. In the chess game, the MovePiece class

needs to get information from the board and the place it intends to move
lo. We can couple all of this together in one flow:

HIGH COHESION

» Itis important to have code that is clean. Objects need to be manageable,
easy to maintain and have clearly-stated properties and objectives. This
is High Cohesion which includes defined purposes of classes, ability to
reuse code, and keeping responsibility to one unit. High Cohesion, Low
Coupling, and clearly defined responsibilities go together. To achieve High
Cohesion, a class should have ONE job. A game piece should move across
the board. It should not need to setup the board or define moves for other

players.

INDIRECTION

» In order to support lower coupling between objects, we look
for Indirection, that is creating an intersection object between two or more
objects so they aren't connected to each other. Indirection and
Polymorphism go hand in hand.

Rook
movef)

getAliMoves() getRookMove()

POLYMORPHISM

» This sounds like a science fiction term, but Polymorphism really means
that one thing can be performed in different ways. All chess pieces can
move, but each has a special way of moving.

PROTECTED VARIATION

» The protected variations pattern protects elements from the variations on
other elements (objects, systems, subsystems) by wrapping the focus of
instability with an interface and using polymorphism to create various
implementations of this interface.

PURE FABRICATION

» A pure fabrication is a class that does not represent a concept in the
problem domain, specially made up to achieve low coupling, high
cohesion, and the reuse potential thereof derived (when a solution
presented by the information expert pattern does not). This kind of class is
called a "service" in domain-driven design.

OVERVIEW

Informational Expert

Creator

Controller

Low Coupling
High Cohesion

Assign a responsibility to the class that has the information

_ needed to fulfill it..

Assign class B the responsibility to create an instance

class A if one of these is true (the more the better):

= B "contains” or compositely aggregates A.

= B records A.

* B closely uses A.

* B has the initializing data for A that will be passed
A when it is created. Thus B is an Expert with
to creating A.

Assign the responsibility to a class representing one of

the following choices:

* Major subsystem classes

* A use case scenario classes within which the system
event occurs.

. Assign a responsibility so that coupling remains low.

Assign a responsibility so that cohesion remains high.

OVERVIEW

Polymorphism

Pure Fabrication

Indirection

Protected Variations

The same name operations (methods) in the difference
classes is defined. And assign a responsibility to the class
the class that the behavior is changed.

Define a class for convenience sake that doesn't express
the concept of the problem area at all.

Assign the responsibility to an intermediate object to
mediate between other components or services, so that
they are not directly coupled.

Assign responsibility to create a stable interface around
unstable or predictably variable subsystem or

